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The problem of the impression of a punch into a non-homogeneous elastic 

half-space has been considered in the works of Korenev [ 1 I and Mossa- 

kovskii 12 1. In the present note there is given the solution of the 

problem on the bending of an unbounded thin plate lying on an elastic 

half-space, whose modulus of elasticity is a power function of the depth. 

The plane case of this problem, i.e. the deflection of a beam-plate is 

treated with considerable detail. By the method of taking the limit there 

is obtained in a new form the solution of the deflection of a beam lying 

on a homogeneous elastic half-space [ 3 1. 

I.. It is known [4 I that for the case of a half-space with a modulus 
of elasticity changing with the depth according to the law E = E,,?, the 

vertical displacements W(X, yl of the boundary points t = 0 of the half- 

space and the normal stresses p(x, yl on the plane z = 0 are connected 

by the relation 

where a is a coefficient depending on v, and where Poisson’s ratio p is 

taken from graphs or published tables [ 4 1 . 

Here, as well as in earlier works [ 1,2 I, it is assumed that 0 +C v < 1. 

Let us suppose that an unbounded thin plate with cylindrical rigidity 

D is supported by a half-space with the above mentioned properties. 

Furthermore, let us assume that the given plate is subjected to a load of 

the form 
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where 6(x) is the impulse function describing an initially applied con- 

centrated unit force. In this case the stress p(x, y) under the plate 

will have an analogous form, i.e. p(x, y) = PA(X) cos Xy. 

Substituting the given expression for p(x, y) into the right-hand side 

of (1.1) , after some elementary transformations we obtain, 

co . 
w (2, y) = WA (5) cos hy, WA(Z) = L WI x--El)Px(E)dE (1.2) 

where 
“fl -- 

k(a)-& 5 (a2+P) 2 cash t dt 
-co 

(1.3) 

Here, no tangential [shear ] interaction between the plate and the 

supporting medium is taken i~nto consideration, but it is assumed that 

there exists a reciprocal connection between the plate and the half-space. 

This means that the deflections of the plate are the same as the displace- 

ments of the boundary points of the half-space. 

In view of this, the function w(x, y) must satisfy the well known bi- 

harmonic equation of the theory of thin plates, i.e. in the given case 

we have the following equation 

Substituting (1.2) into (1.41 we obtain 
co 

pA(z)f(-&-h2 2D * > s k ( ( 2 -z 1 ) p,. (E) d;: = 6 (z) 

(1.4) 

(1.5) 

This integro-differential equation is easily solved by the method of 

operational calculus. For this purpose we make use of Fourier transform- 

ation. We introduce the notation 

u+3 m D,r V/z (1 + v)) 
7=y, ‘,I--‘DI‘ ~1,~ (1 _ v)) = 7 = Cm (‘1-c;) 

The solutions of the equation (1.5) can be represented in the form 

(1.7) 

In view of (1.31, the Fourier transform of the kernel of the equation 
considered is 
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Applying to the double integral (1.8) a transformation analogous to 

the one used on the integral (2.63) of the work [5 1 (p. 171), we find 
that 

K (u) = C-mD-l pqu2 + A~)“-1 

Substituting (1.8) into (1.2), we 0Ltain 

(1.9) 

2. We shall transform the slowly converging integrals occurring in 

(1.7) and (1.9) into rapidly converging ones with the aid of contour in- 

tegration. 

For this purpose-we determine the zeros and singular points of the 

function 

We shall assume that m and n are integers. This restriction will be 

removed later. 

OLviously, the function Fhtw) has two Lranch points, w = f ih. In order 

to find the zeros of the function (2.1), we represent it in the form 

nz n 

F>. (w) = 11 (l/w2 + h2 - a,) , I-2k’ 
a,, = c.exp (in- ) ,!L ; 

(k = l,...,m) (2.2) 
Ii=1 

In what follows let 

which is determined in 

(iw, ih) and by means 

wedge-shaped region 

us select that single-valued Lranch of the function 

s = (w" + h?)nllli 

the plane with the excluded rays (- im, - ih) and 

of which the indicated region is mapped on the 

n 

and particularly, on 



ph(e)= ,(i sinqx[ 
tSz__ ~z)'/?W+3) e--sIxIds 

_ y2 + 2y cos [l/z (v + 3) x] (9 - A2)“‘(“f3) + (&.2 _ h”)‘+3 7s 
A 

+& 1 e-0 

j=l 
v +3 ajaj”-” 
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Hence, all zeros of the function Q(w) will have to be numbers of the 

formd kzk" - x2, k = 1, . ..) In, for which the following inequality holds 

1 arg ah 1 < + (2.3) 

Taking into account the fact that m > n, it is not difficult to show 

that the numbers 

al=cexp(-i-:)=-b,, a,n=cexpi-$=b, 

satisfy the condition (2.3). 

(2.4) 

It is impossible to select from the set al, . ..) a, any numbers, other 

than those given in (2.41, that could satisfy condition (2.31. This 

follows from the fact that the arguments of the numbers ak decrease in a 

monotonic way frm arg ai = - n/m to arg an = n/m - 2n, and that even a 
does not satisfy condition (2.31, because 3/2 < m/n < 2 in view of (1.6 5 

and of the inequality 0 < v < 1; finally, the numbers nk have to be pairs 

of conjugate numbers. 

Thus, we see that in the general case (0 < v < 1) the function Fx(w) 
will have only two zeros in the lower and only two in the upper half- 

planes 

w=aj=I/bjn-h2, 
~ 

Im l/bj” - h2 > 0 (i = I,21 P-5) 

W=-Uj (i = 1, 2) (2.6) 

3. Let us return now to the formulas (1.7) and (1.9). Bearing in mind 
the considerations of Section 2, we now proceed to transform the path of 

integration for the integral occurring on the right-hand part of (1.7); 

for x < 0 the path becomes a loop containing the ray (i A, im ), for x > 0, 

a loop enclosing the ray (- iA, - ioo ). 

Carrying out the suggested transformations, making use of (1.6) and of 

the notation c"'= y, in place of (1.8) we obtain the following result 

One can show without 

that 

(3.1) 

difficulty that b, 2m-n = (b, 2n)(v+1)‘2, and 
. I 

b 1.2" = y2/@+@ exp * i7t - 
( 

2 

vi-3 ) 
(3.2) 
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Ihe formula (1.9) can be transformed in an analogous way to give 

The expressions for the stress ph, y) under the plate, and for the 
deflections of a plate loaded with a unit concentrated initial force will 

be 

If, herein, one has to use rectangular coordinates (for example, when 

one investigates the behavior of a foundation plate under a rectangular 

grid of columns) then one has to substitute pX(n) and WA(X) from (3.1) 

and (3.3) into the right-hand side of formula (3.4). 

In those cases when polar coordinates are more suitable (under sym- 

metric axial loading) one should select the original expressions (1.7) 

and (1.9) for PA(X) and WA(X), respectively. 

For the stress p(r) under the plate, subjected to the initial unit 

force, and for the displacement w(r) we will then have the following ex- 

pressions 

p(r) = &rs3dp, 

?-= 

4. let us dwell upon the plane case of this problem in greater detail. 

First, we consider the problem of the deflection of a beam-plate under a 

~“,w (pr) 
w (r) = & \ Adp 

o Y+PY+3 
(3.5) 

unit load concentrated along the line x = 0. 

It is not difficult to see that the stress p,(x) under the plate will 

be determined in this case by means of the limit relations 

PI(Z) = lim ph (4 for A+0 (4.1) 

while the bending moment, Ml(n) = Dy” (x), of the plate is given by 

d%. (4 
MI(~) = limD---- 

A-0 
dx” (4.2) 

Setting X = 0 on the right-hand side of (3. l), and bearing in mind 
that on the basis of (2.5) and (3.2) 
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lima,,2 = i-7 
A+0 

hexp (+e3) 
we obtain 

(4.3) 

+ 

Analogously, after two differentiations, from (3.2) we derive the 

result 
1 

sin [Ii2 (v-t- 3) x] s “4 1 exp (- yv-t3 1% ( s) ds 

- 1 + 2.69 cos [1!2 (v + 3) 7c] + sZ(“-t3) 

2 - 
--sin ~~,~,,,,~~-v~3)~xp(--7Y:3j5[si*v~)} i v+3 \ 

(4.4) 

Making use of the obtained expressions for p,(x) and M,(X), one can 

give quite simple formulas for finding the maximum stress, max pl, under 

the plate and the maximum bending moment, max M,, of the plate. These 

formulas can be written as 

IPI cos [2x / (v + 3)] 
max \lJfI - ,,: 31tv+(2sin q+ -+ sin IT, (” + ;i)] ) (4.5) 

In order to obtain the formulas (4.5) from (4.3) and (4.4) one has to 

set x = 0. After that one must transform the resulting improper integrals 

to a form which permits the use of the following relation 

lco s t”dt sin a (7: - A) - 
7c 1-21~0s A + P = sin>.sinza ' 

h2 < x2 

0 

(4.6) 

for their evaluation. 

The last relation was obtained by the method of contour integration. 

Hereby the integration contour consisted of a loop surrounding the origin 

of the coordinate system and the interval (0, R) of the real axis, and of 
the circle of radius R -a a. 

Setting in formulas (4.3) and (4.4) 

1 - 
y=o, y+3= {E,[2(1--[12)0& = ca (4.7) 

we find the following formulas for the stress p,(x) under the plate and 

for the bending moment M,(n) in the beam-plate lying on an elastic homo- 

geneous half-space and subjected to a unit load concentrated along a line 
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(4.9) 

0 

These formulas, which were first obtained by us in an earlier work 

[3 I, have certain advantages over formulas given by other authors; it 

should be noted that formula (10) of the earlier work [ 3 1 contains a 
misprint; in place of cos(n/2 - ~1x1 /2) it should be cos(n/6 - clx1/2), 

5. If along the line x = 0 of a beam-plate there is acting a concen- 

trated turning moment, rotating in a clockwise direction, then the form- 

ulas of the bonding moment M,, (x1 along a plate cross-section, and the 

stress pII under the plate can be obtained easily by starting out with 

the formulas (4.3) and (4.4) and the use of the relationship 

MI/, PI1 = -gJM1, PI) (5.1) 

In case the beam-plate is subjected to a unit deformation [ 5 1 along 

the section x = 0, one uses the relationship (compare [ 3 I 1 

MIII, PIII -= g(ipf,, PI) (5.2) 

for the computation of the bending moment M,,,(x) of the plate and of the 

stress pIIT under the plate. 

In conclusion, we note that it is possible to obtain the exact solution 

of the deflection problem of a semi-infinite plate lying on an elastic 

half-space of the type considered here. 

'Ihis can be done by a method analogous to the one used in [ 7 1. First, 
one reduces the problem to an integral equation of the first kind and of 

the Wiener-Hopf type, after that one solves this equation by the use of 

a known procedure [ 6 1 . 
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